## Fundamental Identities
### Converting a Difference into a Product
$\forall b \neq 0$,
$
a - b = b \left( \frac{a}{b} - 1 \right)
$
It's useful for:
- **Sign analysis**. It's often easier to determine the sign of a product than a difference.
- **Rate of growth or decay**. The term $\left( \frac{a}{b} - 1 \right)$ represents the relative change from $a$ to $b$.
### Square of a Sum
$
(a+b)^2=a^2+2ab+b^2
$
### Square of a Difference
$
(a-b)^2=a^2-2ab+b^2
$
### Difference of Squares
$
a^2-b^2=(a+b)(a-b)
$
## Cubic Identities
### Cube of a Sum
$
(a+b)^3=a^3+3a^2b +3ab^2-b^3
$
### Cube of a Difference
$
(a-b)^3=a^3 -3a^2b+3ab^2-b^3
$
### Sum of Cubes
$
a^3+b^3=(a+b)(a^2-ab+b^2)
$
### Difference of Cubes
$
a^3-b^3=(a-b)(a^2+ab+b^2)
$