$ \begin{align} (x+3)(x+5)(x+7)(x+9)=9 \end{align} $ Let $u = x+6$. $ \begin{align} (x+3)(x+5)(x+7)(x+9)=9 \\ (u-3)(u-1)(u+1)(u+3)=9 \\ (u-1)(u+1)(u-3)(u+3)=9 \\ (u^2-1)(u^2-9)=9 \end{align} $ Let $z = u^2-5$. $ \begin{align} (u^2-1)(u^2-9)=9 \\ (z-4)(z+4)=9 \\ (z^2-16)=9 \end{align} $ Now we can work our way backwards and solve for $x$. $ \begin{align} z^2=9+16 \\ z=\pm\sqrt{25} \\ u^2-5=\pm\sqrt{25} \\ u=\pm\sqrt{5\pm\sqrt{25}} \\ x+6=\pm\sqrt{5\pm\sqrt{25}} \\ x=\pm\sqrt{5\pm\sqrt{25}}-6 \end{align} $ We find three solutions, $x=-6$ (double root), $x=\sqrt{10}-6$ and $x=-\sqrt{10}-6$. 1. $x=\sqrt{5-\sqrt{25}}-6=\sqrt{0}-6=-6$ 2. $x=\sqrt{5+\sqrt{25}}-6=\sqrt{10}-6$ 3. $x=-\sqrt{5-\sqrt{25}}-6=-\sqrt{0}-6=-6$ 4. $x=-\sqrt{5+\sqrt{25}}-6=-\sqrt{10}-6$ <!-- basicblock-start oid="ObslEiK8sLJ7FHq1RHzmHqxu" --> Solve $(x+3)(x+5)(x+7)(x+9)=9$. :: Hint: Use symmetrical substitution. <!-- basicblock-end -->